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The space of 2-by-2 Hermitian matrices is isometric to Minkowski space. This 
is commonly used to exhibit the group SL(2, C) as a twofold cover of the identity 
component of the Lorentz group. That these Hermitian matrices also represent 
equations of circles in the Euclidean plane leads to the group PSL(2, C) as the 
Mibbius group of the Euclidean plane. Clifford algebras naturally arise in the 
construction of covers of the orthogonal group by spin groups. By considering 
in addition the Clifford algebra of the space of equations of spheres, we are able 
to extend these ideas to the M6bius group of finite-dimensional vector spaces 
over general fields. 

O V E R V I E W  

Represen ta t ions  o f  the  Lorentz  g roup  O(1,  3), with s ignature  ( + - - - ) ,  
have  been  o f  great  in teres t  to bo th  physicis ts  and  ma thema t i c i ans  since 
Eins te in  i n t roduced  relat ivi ty.  With  the adven t  o f  qua n tum mechanics ,  and  
the Di rac  equa t ion  in pa r t i cu l a r  (Dirac ,  1927, 1928), the sp inor  represen ta -  
t ion  o f  the  iden t i ty  c o m p o n e n t  SO+(1, 3) by  use o f  its twofo ld  cover  SL(2,  C) 
has  ga ined  specia l  impor t ance .  I t  arises as the  " a d j o i n t "  r ep resen ta t ion  of  
SL(2,  C) on  the space  o f  Hermi t i an  matr ices  H ( 2 ,  C) (Penrose  and  Rindle r ,  
1984). This space ,  e q u i p p e d  with the de t e rminan t  as quad ra t i c  form,  is 
i somet r ic  to Minkowsk i  space ,  ~ ,3 .  Wha t  is less fami l ia r  is that  H ( 2 ,  C) 
represents  equa t ions  o f " c i r c l e s "  in the Euc l idean  p lane ,  and  tha t  the quad r i c  
in the  pro jec t ive  space based  on H(2 ,  C) is a con fo rma l  compac t i f i ca t ion  
o f  this  p l ane  (Hua ,  1981). The M6bius  group ,  which  is a g roup  o f  c omp le x  
po in t  t r ans fo rma t ions  tha t  sends "c i rc les"  to "c i rc les , "  na tura l ly  acts on 
this quadr ic .  The matr ices  o f  de t e rminan t  zero,  which  represen t  po in ts  o f  
this quadr ic ,  fac tor  into a co lumn (~) in C 2 and  a row which  is the  He rmi t i an  

~Department of Mathematics, University of California at San Diego, LaJolla, California. 
2Department of Natural Science, San Diego State University, San Diego, California. 

225 
0(120-7748/90/0300-0225506.00/0 �9 1990 Plenum Publishing Corporation 



226 Fillmore and Springer 

adjoint (~)'*. It is these columns, called spinors, on which SL(2, C) naturally 
acts. The group SL(2, C) also has a projective spinor representation when 
it acts on the complex projective line consisting of points (~)(~, where (~ 
denotes the multiplicative group of C. In analogy with classical projective 
geometry, we call (~) the homogeneous coordinates of the projective 
spinor (~)C. 

In terms of  Clifford algebras and their even subalgebras, the Clifford 
algebra based on ~ ' 3  has its even subalgebra isomorphic to the algebra of 
all 2-by-2 complex matrices. The subgroup of the even Clifford group 
consisting of  elements of unit spinorial norm is isomorphic to SL(2, C). 
The Clifford algebra based on R ~ has its even subalgebra isomorphic 
to C. The even Clifford group is isomorphic to (~. Thus, we have an even 
Clifford algebra that consists of 2-by-2 matrices over another even Clifford 
algebra. The former is related to the space of  equations of  "circles," and 
the latter to the space of  points. We will call this the classical case. See 
Lam (1973) for a general discussion of Clifford algebras. 

In more detail, the equation of a "circle" is given by 

pz*z - 13*z - z*/3 + q = 0, 

where p and q are real numbers and/3 is complex. To represent a proper  
circle, p cannot be zero and /3*/3 must be greater than pq. This equation 
can be represented by a Hermitian matrix 

(:, 5 
If  it has determinant zero, it can be considered to represent a point in the 
Euclidean plane. Such matrices are of rank one and so have a factorization 

( 5 -/3* \ r / / \ ~ 7 /  

where s c and ~7 are complex numbers, A is real, and t* denotes the Hermitian 
adjoint. If  ~7 is not zero, then 

and the matrix represents the point associated with the complex number z. 
Now the action 
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induces the action 

p b p b \ ' *  o r - -~  a 

which we call the projective vector action. 
We here extend the classical case to the case of a finite-dimensional 

vector space over an arbitrary field of characteristic not two and equipped 
with a nondegenerate quadratic form, with these differences: 

1. We will find the cover of  the full orthogonal group by using the 
whole Clifford algebra. 

2. The equation of  a "sphere"  will be determined by a quadratic form 
instead of by the Hermitian form associated with complex numbers. 

Our approach is quite different from that of  Vahlen as revived recently by 
Ahlfors and others (Ahlfors, 1986; Lounesto and Latvamaa, 1980; Lounesto 
and Springer, 1989). 

1. S P A C E S ,  A L G E B R A S ,  S P H E R E S ,  A N D  S P I N O R S  

Some of the terminology already used in the previous section will now 
be formally defined. The main aim will be to introduce notation used later. 

Let x denote a vector in a finite-dimensional vector space X over an 
arbitrary commutative field K of characteristic not two. Let / (  denote the 
multiplicative group of K. Equip X with a nondegenerate quadratic form, 
denote its associated bilinear form by x.y, and denote its orthogonal group 
by O(X). The Clifford algebra A associated with this quadratic form is the 
associative algebra generated by the vectors of  X with relations x 2= x.x 
which imply x y + y x  = 2x.y. We will call the submonoid generated by the 
vectors of  X the Clifford monoid and denote it by M. The subgroup 
generated by the nonisotropic vectors of  X is called the Clifford group and 
is denoted by F. 

The Clifford group F is a central extension of the orthogonal group 
O(X), the nonisotropic vector a mapping to the reflection 

x ~+ - a x a / a - a  = x - a ( 2 a . x / a - a )  

in the space orthogonal to a. See Conway et al. (1985). 
Orthogonal transformations of  X extend uniquely to automorphisms 

and antiautomorphisms of the Clifford algebra. In particular, the identity 
on X extends to the identity on A as well as to the anti-involution a ~-~ Ja;  
while negation on X, that is, x ~-  - x ,  extends to the involution a ~,~ la as 
well as to the anti-involution a ~ ,  *a  (Lam, 1973). 

The equation of a "sphere"  of  X has the formula 

w~ - 2w.x + w ~ --- 0 



228 Fillmore and Springer 

where w 0 and w ~ are scalars in K and w is a vector in X. The notation 
extends the usual polyspherical coordinate notation (Klein, 1926). This 
includes proper  spheres (w ~ # 0 and - w ~  ~ + w.w # 0), proper  hyperplanes 
(w ~ = 0 and -w~  ~ 0), and "cones"  (-w~176 = 0). Only the 
choice w ~ w ~, and w equal to zero does not represent the equation of  a 
"sphere."  We represent the equation of a "sphere"  by the matrix 

( s  .W 
W =  wO 

Such matrices, plus the zero matrix, form a vector space W over K of 
dimension two greater than that of X. All matrices obtained by multiplying 
by a nonzero scalar represent the same "sphere."  The space W of"spheres"  
is then the projective space of  one-dimensional subspaces of  W. 

Inspired by the role that -w~  plays in distinguishing different 
types of  "spheres,"  extend the quadratic form on X to IV by 

w ,,~ w.w = -w~ 

If  w ~  1 and w-w # 0, the sphere is proper  and w.w is the "square of  its 
radius." The quadric of  W, denoted by ~ ,  is the subset consisting o f"cones . "  

The Clifford algebra A associated to the quadratic form of W consists 
of  two-by-two matrices over A, and is in fact all such matrices, Let F denote 
its Clifford group. Also let A denote the set of  all two-element columns 
over A, so A acts on fi, by matrix multiplication. 

The involutions and anti-involutions of A will be denoted by the same 
symbols as those of  A. For instance, Ja in A corresponds to Ja in A. Let 0 
denote the matrix 

Then Ja = 0'*a0 -1, where t* transposes the matrix a and applies * to each 
entry. Note, in comparison to the classical case, that we find it convenient 
to write adjoints and transposes to the upper left. The anti-involution J 
induces a "Hermit ian adjoint" j that sends a column ci to the row Jc7 = '*ci0 -1. 
The Hermitian adjoint j and the anti-involutions J on  A and * on A are 
related by 

J(gJa) = aJg, *(Jga) =Jag, J(~6,/) = *~,JgJa 

The latter replaces sesquilinear with "bi-Hermitian" with respect to the left 
A- right A-bimodule structure on fi,. 

Define S to be the subset of .4 consisting of  columns (s,) $= 
s O 
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satisfying 

1. s ~ and s o are the products of vectors in X. 
2. s~*s  ~ is a vector in X. 
3. I f  neither s ] nor s o is invertible, then s l * s  ~ must be a nonzero 

isotropic vector of  X. 

Let S be the set of equivalent classes of  S modulo the Clifford group F. 
We denote a typical element of  S by s = ~F and call ~ the homogeneous 
coordinates of  the projective spinor s. The Clifford group F acts on the 
space W by the vector action w,~-~y o w = ywJy and on the projective 

- - o  o 

quadric qt by the projective vector action ~ - - ~ K  ,~ ,y  o ~ = ~  o ~K. The 
kernel of  the later action is denoted by Z. Define the M6bius group G to 
be the factor group F/Z.  The quadric q~ is J-Hermitian:  for the element 

-- ~/ (  of  q~, we have J~ = ~. As in the classical case, ~ factors as ~ = ~J~/( 
for some ~ in S. This induces a projective spinorial action of the M~bius 
group G on S given by s = ~F ,~, gs = 7~F, where g is the Z-coset of  y. 

We will select a subset ~ of  the Clifford group F, an element e--" e/~ 
of the quadric ~, and a spinor e = ~F of S such that: 

1. ~ i s a n o r b i t o f G : q ' = G o e = ~ o e .  
2. S is an orbit of  G: S = Ge = ~e .  

3. Each element o- of  ~ uniquely represents a "sphere"  of  X. 

As in the classical case, the quadric �9 is the conformal compactifieation 
of X. It consists of  copies of  three structures associated with X:  the vector 
space X itself, the cone of all isotropic vectors in X, and the projective 
quadric associated to this cone. We call these cases (x), (y), and (z), 
respectively. 

Since we use these copies in the proofs to follow, we will be more 
precise. Let Y denote the cone {x in X ]x.x = 0} and let Z denote the quadric 
{x / ( Jx -x=  0 and x # 0}. Then, the disjoint union X ~b Y�9 Z, the set of 
representatives E, the set of  spinors S, and the quadric q~ correspond 
bijectively. The bijections ~-> S ~  are given by o- ,~o" o e ~-, fie. The 
bijection X ~ Y 0 Z ~ E consists of the following cases :  

(x) For each x in X, 

(y) For each isotropic vector y in Y, 

:) 
Y 
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(z) For each z ' / (  in Z, choose a representative nonzero isotropic vector 
z and a vector t of X such that z ' / (  = z/(, 2t.z = 1, and t.t = 1 ; then 

:)t 
Finally, we want to call attention to an unusual feature of this paper. 

The method used is "form invariant" with respect to the field, the dimension 
of  the space 32, and the quadratic form associated with X. For instance, 
the matrix representing inversion in the proper sphere with the equation 
w~ - 2w-x + w ~ = O, where w ~ ~ 0 and - wOw ~ + w.w ~ O, has the form 

:)w0 
W =  W 0 = 

where c is the center of  the sphere, and p is the power of the origin with 
respect to the sphere. This form does not depend on any of the above- 
mentioned structures of the space X. This is because, up to a nonzero scalar 
multiple, the elements of  the matrices have direct geometrical significance. 
The same is true of  the elements in the columns, which represent projective 
spinors in homogeneous coordinates. This happens because the algebraic 
structures which we use are directly tied to the underlying geometry. 

2. P R O O F S  

Since the homogeneous coordinates of the set of spinors S are products 
of  vectors in X, we begin by proving some lemmas concerned with such 
products. Let K be a commutative field of  characteristic not two, and X 
be a finite-dimensional vector space over K equipped with a nonsingular 
quadratic form. Let A be the Clifford algebra of X, and M be the "Clifford 
monoid"  formed by products of vectors, possibly isotropic, of X. The 
following lemma and its corollary are useful in showing that certain elements 
of  the algebra A are in the monoid M. 

L e m m a  O. I f a  and b are vectors in X and 1 a scalar in K, then / + a b  
is in the monoid M. 

Proof: 

1. If  I = 0, there is nothing to prove. If  a is invertible, then 

l + a b  = a ( a - l / + b )  

is a product of two vectors, and similarly if b is invertible. We can now 
assume that 1 ~ 0 and that both a and b are isotropic. 
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2. I f  2a .b  r 0, then  the vec tor  x = a +  b is invert ible .  The p roduc t  ( l +  

ab)x  is easi ly  checked  to be a vector  using aba  = a ( 2 a . b ) - b ( 2 a . a ) .  Since 
- - 1  " x Is a vector ,  we ob ta in  l + a b  is in M. 

3. Suppose  that  2a .b  = 0. Since X is nons ingula r ,  we may  find i so t rop ic  
vectors  a'  and  b' such that  2a .a '  = 1, 2b.b '  = 1, and  the nons ingu la r  subs paces  
s p a n n e d  by  a and  a '  and  by  b and b' are o r thogona l .  Choose  k in K not  
equal  to • 1, so that  the vectors  y = a + a 'k  and  z = a - a ' k  are non i so t rop ic .  
One checks tha t  the p r o d u c t  y ( / +  ab)z  is equal  to L +  AB, where  aga in  L = kl 
is a nonze ro  sca lar  and  bo th  A = 2al  + bk  and  B = - a ' k  are i so t rop ic  vectors.  
Moreover ,  2A.B = -2k l  ~ O. This is of  the  form covered  by  par t  2. Since y 
and  z are inver t ib le ,  it fo l lows t h a t / + a b  is in M. �9 

Corollary. If  a, b, and  c are vectors in X, then bo th  a b + b c  and  a + b a e  
are  in the m o n o i d  M. 

Remark. That  is, if  bo th  terms have a vec tor  in common ,  thei r  sum is 

in the mono id .  

Proof Since a b + b c  = 2 a . b + b ( c - a ) ,  it fo l lows f rom the l e m m a  tha t  
ab + bc is in M. We prove  tha t  a + bac is in M by cons ider ing  cases. 

1. Suppose  that  a . a  # 0. Since a-~ba is a vector ,  a +  bae = a(1 + a - l b a c )  
is in M by the lemma.  

2. Suppose  that  2 a . e = 0 .  Then a + b a e = ( 1 - b c ) a ,  which  is in M by 
the lemma.  

3. The r ema in ing  case is that  bo th  a . a  = 0 and  2a.e # 0. Choose  k so 
tha t  x = a k + e  is an inver t ib le  vector.  Then 

(a + bae)x = ac + b (2a .ek  + e .e)a  

and  this is in M by the first asser t ion  of  this corol lary .  Since x is inver t ible ,  
a + b a e  is in M also. �9 

Lemma I. I f  X is nons ingula r ,  then all the  nonze ro  e lements  o f  the 
Clifford m o n o i d  are of  the  form m = z~z2. . ,  zry, where  the zi are pa i rwise  
nonzero  o r thogona l  i so t rop ic  vectors  and  y is an e lement  o f  F. 

Cal l  such an express ion  a " l e f t - r e d u c e d "  form of  the e lement  m. 

Proof View m as the  p roduc t  of  e lements  in o rde r  f rom three  " l i s t s" :  
m = ( . . . z . . . ) ( . . . x . . . ) ( . . . t . . . ) .  The t-l ist  consists  o f n o n i s o t r o p i c v e c -  
tors,  and  the z-list  consis ts  o f  i so t ropic  vectors  which  are o r thogona l  to all 
vectors  in bo th  the  z-list  and  the x-list .  In i t ia l ly  the x- l is t  is any  p r o d u c t  o f  
vectors  giving the e lement  m. On the o ther  hand ,  in i t ia l ly  bo th  the  z- and  
the t-lists are empty ,  that  is, the p roduc t  o f  each by  conven t ion  is the  
sca lar  1. Each  step o f  the induc t ion  will examine  the r igh tmost  vec tor  x '  o f  
the x-l is t  and  then reduce  by one the n u m b e r  of  vectors  in that  list and  
increase  by  one  the size o f  e i ther  the z- or  the  t-list. 
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1. I f x '  is nonisotropic, then simply declare x'  to be the leftmost member  
of  the t-list with no other changes. 

2. Else x' is isotropic. 
(a) I f  x' is orthogonal to every vector in the x-list, then move x' to the 

right of  the z-list with at most a change of  sign. 
(b) Else let x" be the first vector to the left of  x' in the x-list which is 

not orthogonal to x'. Move x' to the left until it is adjacent to x" with at 
most a change of  sign. 

(i) I f  x" is nonisotropic, then shift x" to the t-list by conjugating the 
vectors in the x-list to its right. 

(ii) Else x" is also isotropic. Then replace x' by the nonisotropic vector 
x"+x ' .  Now shift this nonisotropic vector to the t-list by conjugating the 
vectors in the x-list to its right. 

The p roof  is now complete with the observation that if any vector z 
and any nonisotropic vector t are both orthogonal to any other vector z', 
then the conjugate tzt -~ remains orthogonal to z'. �9 

Remark. All the nonzero elements of  the Clifford monoid M are also 
of  the form m = yz . . . .  z2z~, where the zi are pairwise nonzero orthogonal 
isotropic vectors and 3' is an element of  F. Call such an expression a 
"r ight-reduced" form of  the element m. This is immediate from the p roof  
of  the lemma by interchanging right and left. 

Lemma 2 and its corollaries are used to determine the special form for 
spinors in the (z)-case. This case has no classical analogue to guide us. 

Definition. Define, within the Clifford algebra, the exterior product  of  
vectors in X to be 

1 
x l ^ x 2 ^  " ' "  ^ X r = ~ .  ~ Xi(l)Xi(2)...Xi(r)Sgn(i) 

i E S  r 

where sgn(i) is the sign of  the permutat ion i in the symmetric group Sr on 
the integers from 1 to r. 

Remark. The vectors x~, x2, �9 �9 �9 xr arc linearly independent  if  and only 
i fx~^x2A " ' "  ^ X r ~ 0 .  

Notat ion as in Lemma 1. 

Lemma 2. I f  z~z2..,  zry and z'~z~.., z'r,y' are two left-reduced forms 
of the same nonzero element of  M, then r = r'  and the z-list and the z'-list 
span the same subspace of X. 

Proof. Suppose that some zj is not in the span of z~, z 2 , . . . ,  zr. Then, 
since the exterior and Clifford products are the same for pairwise orthogonal 
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vectors ,  we have 

0 r  " "  ^ z r ) 3 '  

= z~ ^ (z~z2... zr3') 
? ! t = z~ ^ (zlz2.. .  z'r,z/) 

= (Zj  ^Z t l  ^ Z / g ^ . ' '  A Ztr,) ~//r = 0 

which is a cont rad ic t ion .  Thus,  all the z~ are in the span  o f  z l ,  z2, �9 � 9  Zr 
and  r ' - -  < r. N o w  repea t  the a rgument  with the z-list  and  z ' - l i s t  inter-  

changed .  �9 

Corollary 1. I f  z y  and  z ' y '  are left r educed  forms o f  the  same nonze ro  
e lement  o f  M, then z ' =  zk  for  some scalar  k # 0. 

Remarks. Call  the  size o f  an e lement  the size o f  its z-list  in any  left- 
or  r igh t - r educed  form. The  size o f  a p roduc t  mn is grea ter  than  or equal  to 
the  m a x i m u m  of  the  sizes o f  m and n. This fo l lows since the s teps in the  
r educ t ion  process  in the  p r o o f  o f  L e m m a  1, and  the r emark  fo l lowing  it, 
never  decrease  the n u m b e r  o f  e lements  in a z-list.  In  par t i cu la r ,  if  two 
e lements  o f  M which  are  not  inver t ib le  have a p roduc t  o f  size one,  then  
each  e l emen t  must  have size one. 

Recal l  

I ~= g= ~ A l s l a n d s ~  s l * s ~  
S O 

but  i f  ne i ther  s ~ nor  s o is in F, then  s ~ * s ~  
J 

and  S = {s = gFlg in ~q}. 

Corollary 2. Let (sl) 
g =  

S O 

be in S, and  assume that  ne i ther  s I nor  s o is in F, so that  s 1 * s ~  0 is in X, 
and  let z be  a nonzero  i so t rop ic  vector  def ined up  to a scalar  mul t ip le  by  
z / (  = s 1 *s~ Then there  exists a vector  t in X so that  t . t  = 1, 2t.z = 1, and  

s =  T 
zt 

where  3' is in the  Cl i f ford g roup  F. 

Proof. Define z =  s ~ *s~ where  k in /~ is to be chosen  later.  Since 
z ~ 0, Co ro l l a ry  1 and  the subsequent  remarks  imply  that  s 1 and  *s o have 
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left- and  r igh t - r educed  forms s ~ = z y  and  *s o=  6z, respect ively.  Thus,  z =  
(zy)(6z)k = zz'y6k, where  z ' =  (y6)z(y6) -~. Note  that  z canno t  be o r thogona l  
to z', for  i f  it were,  then  zz' wou ld  be zero or  a z-list  o f  size two ins tead  of  
one.  Set t ' = z ( 2 z ' . z ) + z ' ,  so now z=zt'y6k. Thus,  

s o = * ( 6 z )  = - z  *6 = - z t ' y 6  *6k = z ( - t ' 6  *6k)y = z t y  

where  t = - t ' 6  *6k. It fo l lows that  

and  tha t  

z 

2t-z -- - 2 t ' . z 6  *6k = - ( 2 z " z ) 6  *6k # 0 

Choose  k - -  - 1 / ( 2 z ' . z ) 6  *6 to achieve  2t .z = 1 and  t . t - - -  1. �9 

Recal l  that  there  are  three  cases,  ca l led  (x), (y),  and  (z), which  descr ibe  
po in t s  o f  the  con fg rma l  compac t i f i ca t ion  o f  X. 

Also recal l  that  the  an t i - invo lu t ion  J is given by  a ,,,* J a -- 0 '*a0 ~ and  
induces  the  " H e r m i t i a n  a d j o i n t "  j given by  d - ~ - J a  '*-~ = a o , where  

* acts on the  entr ies  o f  a ma t r ix  e lementwise ,  and  t is the o r d i n a r y  t r anspose ,  
s o  that  J ( y a )  = J a  ~y, for  all y in 12. 

N o t a t i o n  as before .  In  add i t ion ,  f rom Sect ion  1, 

I (  w w ~ and  w ~ W=~ w = wO 

are  scalars  in K and w is a vec tor  in X }  

~ = { w  in W I w  not  zero, and  w.w=O} 

~ = { q , =  ~O/(]~ in ~ }  

Let ~ be an e lement  o f  S and  set e = ~F in S. One checks that  e = ~ J~ 
is in ~ ,  so e = e/~ is in qr. No te  that  o- o e = o-e J o-/( equals  o'~ J(ff~)/s We 
m a y  wri te  S = E e and  ~ = Z o e as a consequence  o f  the fo l lowing lemma.  

Lemma 3. There  is a choice  o f  ~ in S and  a subset  E o f  .IF which  is a 
set o f  un ique  represen ta t ives  o f  bo th  S and  �9 in the  sense that  the maps  
o- ,,~ fie and  ff ,,--, ff o e are  b i jec t ions  f rom E to S and  W, respect ively .  Hence  
fie ,,~ o- o e is a b i j ec t ion  f rom S to ~ .  
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P r o o f  A typical element of  S is 

s = ~F, g = 
s O 

where s 1 and s o are elements of  M such that s ~ *s o is a vector o f  X, but if 
neither s 1 nor  s o is in F, then s I *s o r O. A typical element o f  q~ is 4` = .~/~, 

S) 
where 0 ~ and 0 ~ are scalars in K and ,11 is a vector in X, such that 0 ~ Q 
and ~ .  ~ = - 0 ~  =0 .  Choose  ~ to be (~), and check that e is ' in S. 

A unique representative g will be constructed that represents both  an 
s in S and the cor responding  0 in ~ .  For  the construct ion o f  ~, we consider  
separately the cases (x), (y), and (z) o f  elements in ~ ,  the conformal  
compactif icat ion o f  X. 

(x) Case. This is the case when s o is in F and, correspondingly,  0 ~ is 
in /~. For  each s = (~0')F in S such that s o is in F, dependent  on s but  not  
on the choice o f  (;~), we define x to be the vector s~(s~  -1 = s ~ * s ~  ~ *s  o of  
X. Then s = (~)F. The corresponding 4` is defined by 

Then g' is in gr and for any ~ such that 4` = 0/~, 4`0 is in /~. Conversely,  
for each 

in ~ such that 4`0 is i n /~ ,  dependent  on 4` but not on the choice o f  

we define x to be the vector ~(4`o)-,  o f  X. Then 

__x:x) 
Any x may  be obtained for a suitable choice o f  0. This means that X is 
embedded  in its conformal  compactif icat ion ~ by identifying vectors o f  X 
with vertices o f  cones in ~ .  The corresponding s is obtained by setting 
s = (~)F. Then s is in S, and for any g such that s = ~F still s o is in F. Having 
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found  the cor responding  pair, we now define if, their common  representa- 
tive, to be the invertible vector  

l 

of  W. One easily checks that  s = fie and 4' = o- o e. For  each x in X we include 

,:(7  xx) 
into ~ as the unique representat ive of  both  s and 4'. 

(y) Case. This is the case when s 1 is in F but  s o is not  and, correspond-  
ingly, 4'o~ is i n / ~  but  4'0 is not. For  each s = (~)F in S such that  s o is not  

s 1 in F but  s I is in F, dependen t  on s but  not  on the choice of  (so), we define 
y to be the isotropic vector  s~ -1=  s ~  I * s  I of  X. Then  s = (ly)F. 
Define the cor responding  4' by 

(o y 4 '=  y 

Then  ~ is in * and 4'o is not  in /~, but  4'o is in /~ for  any -O such that 
4' = OK. Conversely,  for  each 

in �9 such that  4'0 is not  in /~ ,  that  is, 4'0 = 0, but  4'~ is in /~ ,  dependen t  on 
4' but  not  on the choice of  

(:o 
we define y to be the isotropic vector  0 (4 '~ )  -1 o f  X. Then 

The corresponding s is obta ined  by setting s = (~)F. Then s is in S, and for 
any ~ such that  s = ~F, we have s o is not in F and s 1 is in F. Define g, their 
common  representat ive,  to be 

( :  l Y ) = ( 1  y : ) ( :  0 )  
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which is a p roduc t  o f  two invertible vectors o f  IV, showing that  o- is in .F. 
One again easily checks that  s = o-e and q~ = o" o e. For  each isotropic vector  
y in X, we include 

into E as the unique representative o f  both  s and ~. 

(z) Case. This is the case when neither s o nor  s ~ is in F and, correspond-  
ingly, neither ~b ~ nor  0 ~ is in /~. In this case, s t *s o is a nonzero  isotropic 
vector in X. No  unique vector  o f  X is determined by s, but  z is determined 
up  to a nonzero  scalar multiple by z/~ = s 1 *s~ for  any choice o f  (s~). Then (z) 

s =  F 
zt 

by the corol lary to Lemma 2, and where t is any vector o f  X such that 
2t.z = 1 and t.t = 1. The corresponding  O is obtained by setting 

Then $ is in ~ ,  and for  any ~ such that 0 = 0/~ both 4~ ~ and ~ are not 
in /~ .  Conversely,  for each 

( S )  
in �9 such that  both ~b ~ and 0 ~ are not in /~, again no unique vector o f  X 
is determined by ~, but  z is determined up a nonzero  scalar multiple by 
z/~ = ~ /~  independent  o f  

2t 
Then 

The cor responding  s is obta ined by setting 

s =  F 
z't' 

where z ' =  zk  is a nonzero  isotropic vector and t' is any vector o f  X such 
that 2t' �9 z' ~ 0. We note that  we may omit the primes, for if z' = zk, k in /~ ,  
then 
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Since 

( z ' ) = ( z )  ( t z + z t ' ) k z ' t '  zt 

setting y = ( t z + z t ' ) k ,  we have y * y = ( 2 t ' . z ) k 2 ~ 0  and y is in F by the 
corol lary  o f  L e m m a  1. N o w  s is in S and both  s o and s ~ are not in F. N o w  
define 9", the c o m m o n  representat ive ,  to be 

o . = ( z ;  l t ) =  (vVl v m l ~ ( v  - - '  

where  m = 1 -  l is a scalar,  v = z - t l  is a vector,  and l is a nonzero  scalar  
chosen  so v is nonisot ropic .  This makes  o- a p roduc t  o f  three invertible 
vectors  of  W. Again one easily checks that  s = o-e and  ~b = o- o e. Thus,  for  
each z ' / ( ,  we choose  a representa t ive  nonzero  isotropic  vector  z and a vector  
t such that  2t-z = 1 and  t . t  = 1 and include 

2) " z t  t 

in E as the unique representa t ive  o f  s and ~. 
Since we have cons t ruc ted  a set o f  unique representat ives  o- in E for  

each co r respond ing  pa i r  s = fie and  qJ = o- o e, clearly o-e ~ o- o e is a bi ject ion 
f rom S = E e t o ~ = E o e .  �9 

To show that  ~ and  S are preserved under  the act ion of  the g roup  F, 
it suffices to show that  they are preserved under  the act ion of  invertible 
matr ices  in W, since e lements  of  F are p roduc t s  o f  invertible matr ices in W. 

No ta t ion  as in L e m m a  3. 

L e m m a  4. ( W m F) o q~ c qs. 

P r o o f  A typical  e lement  of  We7 F is an invertible vector  

W 

w =  wO 

of  IW, and  a typical  e lement  of  q~ = E o e is ~b = o-o e = ~/(. Let ~ ' =  w~Jw 
and tp '=  4, ' / (  = w o 4J. N o w  we must  show that  q,' is still ~ .  But 

w 'w = = w(2w..  ) -  

is in W. In addi t ion,  ~ '  is i sot ropic  since 4 " . 4 " =  (w.w)2~.~ =0 .  Finally,  4" 
is not zero, since 4' is not  zero and w is invertible. Thus,  4" is in ~ .  l "  

Corollary.  ( W cT F ) S  ~_ S. 
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Proof A typical  element of  ,W c~ F is an invertible vector 

W ~ wO 

of  W, and a typical element o f  S = Ee is o f  the form 

(z) 
o-~F = F, F, or F 
" z t  

as in Lemma 2. Their p roduc t  is o f  the form dF, where ~ = (]o'). Using 
Lemma 0 and its corollary,  in all cases one sees that a ~ and a ~ are in M. 
It is also easy to calculate that  a I *a ~ is a vector in X. Finally, we must  
show that, if a 1 *a ~ = 0, then either a I or  a ~ is invertible. For  this, note that 

( a l ~  ( a  I *a 0 a 1 *a"~ 
aJa=\  (*a~ aO.a,] 

as well as dJti = (wo-e)J(wo-~)= w$Jw, where qJ= o-~J(o-~). Here we have 
used J(wo-~)=J(ge)Jw. By the lem'ma, w~Jw/(~is in xp, so t~ J~ ~ O. But if 
a ~ *a ~  then a ~  ~ = 0  also, and 

So, either a ~  ~ or a ~ *a I is a nonzero  scalar, showing that a I or a ~ is 
invertible. This, ~iF is in S. �9 

The lemma to fol low will be used to develop the equat ions associated 
with M6bius  t ransformat ions  and their fixed points. This lemma, in the 
context  o f  the complex  numbers ,  was al luded to by Car tan  (1937), who 
remarks that  "spinors  have metric properties,  but  not  affine characteristics." 

Lemma 5. For g in ~q, J~g = O. 

Proof We have g = o-~ with ~ in ~. Then Jg~ = J~ J ~  = J ~  J o-o-, since 
J o-ff is a scalar times the unit  matrix. Since ~ = (1) and J~ = (0, 1), we have 
J ~ = O .  �9 

Corollary. Let y be in I / a n d  g in ,~ I f  g ' =  yg, t h e n / g ' y g  = O. 

Remarks. I f  we set 
yo~ :) and 

then 
,)/c~ 2)(::) 

= *S ~lyoS1 +*S rlT2S~176 1 + * s t ~  ~ 
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from which we obtain the equation for the general M6bius transformation 
associated with y in its biquadratic form over the Clifford algebra A. 

Recall that an element of  G is g = yZ, where Z is the kernel of F acting 
on * .  So G represents the M6bius transformations directly, while F rep- 
resents their equations. 

The MSbius transformation y represents inversion in a nonsingular 
"sphere"  of  X, when Y is 

w 
W = 
~ wO 

In this case, 

J S ' W S  = * S t l  wO s I - -  @ s t l w s  0 "~- * s t O w s  I - -  * s tO  w ~ 1 7 6  0 

The corresponding equation of  fixed points, Jgwg = 0, represents the points 
of  nonsingular "sphere."  In the (x) case of  Lemma 3, that is, 

i =  = y, x i n X a n d  y i n F  
S 0 ~ ~ 

the equation reduces to w ~  w ~ =  0. This is the classical equation 
of  a "sphere."  

Besides inversion in a nonsingular "sphere"  of  X, other common 
M6bius transformations of  X have simple associated matrices. 

Translation: 

X ,v,~. X + a 

Homothety: 

x ~- xh (A in / ( )  with 

"Special conformal" transformation: 

x,,,* (x - l + a )  -l (where defined) (: 
Compare this with the approach of  Lounesto and Latvamaa (1980). 

This completes the technical lemmas. We may now state our main 
conclusions. 

Proposition 1. The set of projective spinors is S--  Fe, and the M6bius 
quadric is W = [" o e. 
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Proof Since Z _ F, the inclusions E e _ Fe and Z o e c_ F o e are immedi- 
ate. Since very element of  F is a product of  invertible vectors, the opposite 
inclusions are a consequence of Lemma 4, its corollary, and induction. �9 

Corollary. The group F acts transitively on both S and ~ .  Moreover,  
these actions are equivalent with respect to the bijection from S to ~ .  

Proof The actions are transitive, since the lemma establishes that S 
and �9 are orbits of  e and e, respectively. By the bijection of Lemma 2, the 
elements s = o-e and t~ = o- o e correspond. The element -7 of F sends these 
to ys = y(~e) = (-7o-)e and Y ~ 0 = -7 o (o" o e) = (-7~) o e, respectively. �9 

Since corresponding elements of S and �9 have the same stability 
subgroups in F, we may define the kernel Z of the equivalent actions of  F 
on S and �9 as the intersection of all the stability subgroups. This justifies 
defining the M6bius group G to be F/Z.  The group G now acts effectively 
on both S and ~ .  Thus we have proved the following result. 

Theorem. The M6bius group G acts transitively and effectively on both 
the projective spinors S and on the quadric ~ and these actions are 
equivalent with respect to the bijection from S to ~ .  

Remark. The "units"  of  F are characterized as those y in F such that 
yx = x ~y for all x in X. Likewise, the "volume elements" of  F are character- 
ized by yx  = - x  ~y for all x in X. Similar definitions hold for F. The subgroup 
Z of F consists of  all such units and volume elements of  F. These units are 
(o k o) and the volume elements are 

(o 0) 
where u is some volume element of  F and the k in / (  are the units of  F. 

There are some interesting and nonstandard ways of characterizing the 
Clifford group of A. The following proposit ion shows the equivalence of 
these nonstandard characterizations to the standard ones. 

Denote a typical element of  A by 

- O/0 a 2 

and recall that 0 is (o ~). 

Proposition 2. The following descriptions of  the set of  elements of  the 
group F are equivalent: 

1. The product of  invertible vectors of  W.. 
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2. Elements a in A satisfying the "Vahlen conditions": 

~ ~ k ~ 

where k' is i n / ( ,  ~ ,  J ~ ,  ~0~, and J~0~ are in ~ 
3. In terms of  the elements ofF,  elements o f F  have one of the following 

simple forms: 
(a) If  the lower left entry of ~ is invertible, then 

where a and b are in X, k is i n / ( ,  and 3' is in F. 
(b) If  some other entry of  ~ is invertible, ~ has the above form changed 

only by permuting the appropriate rows or columns. 
(c) If  no entry of  g is invertible, then 

(zsz) 
" z t  - s z t  

where z, s, t are in X;  2s.z, 2t.z, s.s, and t.t all equal 1; z.z=O; and 8 is 
in F. 

Proof. The set described by 1 is contained in the set described by 2. 
This follows from Proposition 1. 

The set described by 2 is contained in the set described by 3. In case 
that some entry of a is invertible, say the lower left entry; we have 

where a and b are vectors, 3' is the element o of the Clifford group F, and 
k is the scalar k = k'/3" *3". That the first column is (~)y and the second row 
is (1 b)3` follows from the (x)-case of Lemma 2 using the fact that ~ and 
J ~ ,  respectively, are in S. That the second column is (k+b"b)y, follows from 

. . k t 

In the remaining case, when no entry of ~ is invertible, we have 

" z t  - s z t  

That the first column is (,~)6, that the first row is (z sz)8, and that the second 
column is of the form *' ' (z,.,)8 follow from the (z)-case of Lemma 2 using 
the fact that ~ ,  Ja0~, and ~0~, are, respectively, in ~ Here z' is an isotropic 
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vector,  u' is a vector  such that  2u ' . z '=  1 and u ' . u ' =  1 and 6' is in F. This 
shows that  

~ zt  - s z u  

where u = - 6 6 '  ~u'~'~ -~. The condi t ion 

0 ) 
implies the fol lowing condit ions.  

(i) (upper  left entry) 

zs(2u'z)  + sz(2t 'z)  = k' 

(ii) ( lower left entry) 

z t u z s -  szutz = 2z ^ (t(2u.z) - u ( 2 t - z ) )  ^ s = 0 

From (i), 2u.z = 2t.z. This simplifies (ii) to z ^ (t - u) ^ s = 0. This then implies 
t - u = z / ' + s /  for some l and l' in K. But 2 s - z # 0 ,  so / = 0 ,  and u = t - z / ' .  
Finally, - s z u  = - s z t .  Thus,  

(zsz t o~= ~ 
" z t  - s z t  

The set described by 3 is conta ined in the set described by 1. It will 
be sufficient to consider  the case 

For, suppose  it were instead o f  the form 

" zt  - -Szt  

Then we could  choose  z' to be any isotropic vector not  or thogonal  to z and 
set 

1 

making ~ an invertible vector  in W. Then the upper  left entry o f  ~ '  would  
be z ' z + z t ,  which would  be in M by the corol lary to Lemma O, and this 
would  also be in F since 

( z ' z + z t )  * ( z ' z  + z t )  = ( 2 z ' - z ) ( 2 t - z )  ~ 0 
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Since 0 ~ a '  would have its lower left entry invertible, it would be of the 
desired form. Now it is easy to show 

(~ kbab)l_l=(a+bl - a . a + m / ~  m a 

where l is a nonzero scalar chosen so that ( a + b ) 2 + k ( l  - 1)/l is not zero, 
and the remaining scalars are defined by m = - k / l + b . b  and 

L= 2a.b+b.b+ k(l-1)/l 
Then a-a + L ~ O. The matrix 

a + b l  - a - a +  ml~ 

1 - I  - ( a + b l ) /  

is invertible, since its square is (~ ~  We see that 

g = ( ~  k + a b ~ /  1~1 

is in I" by observing that for all y in F, y = X l , . . . ,  xr, where the xi are 
invertible vectors of  X, 

(10 ~)l')/ ~-'~ (~ :)(01 0/] '/~(Xl0 --0Xl)""" (0r--0Xr) ((~ :)(~ O1)) r 
showing that ~ is also in F. �9 

3. A P P L I C A T I O N S  

3.1. Lie Geometry 

Let 

W 

be in W, so that the associated equation of a "sphere"  is 

w ~  2w.x+ w ~ = 0 
0 co I f  w ~  and w - w = - w  w + w - w ~ 0 ,  the sphere is a proper  sphere and 

one calls w- w/(w~ 2 the square of  its "radius ."  
I f  K were an ordered field in which positive elements had square roots, 

we would be able to write w.w = -w~176176 as 

O :  --wO w~176 ( ~l)r)2 ~-W'W 

where w-w is the square (wr) 2. This motivates the following, where we make 
no special assumptions concerning square roots in K, but where we do 
require that K be an ordered field. 
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Let Y be an n-dimensional vector space equipped with the quadratic 
form y , ~  y.y. Let X be the orthogonal sum of the two spaces erK and Y, 
where e :er  = -1 .  In this case, x = ery r + y  can be interpreted as representing 
an oriented sphere with center y and radius lyr]. The sign of yr determines 
the orientation. 

To stress this new structure on X, we write a general element of  W as 

{ e : ' + w  -w ~ ) 
w=\ wO --(erw'+w) 

Then, when w-_w=--wOw~--(wr)2+W'W is zero, w is associated with the 
equation w ~  of  a "sphere ."  Now the M6bius group G 
can be interpreted as the group of the Lie geometry of Y. The transformations 
represented by G do not act on the points of  Y, but only act on the "spheres"  
of  Y. Orthogonal "spheres"  are not in general sent to orthogonal "spheres ,"  
but instead tangent oriented "spheres"  are sent to tangent oriented 
"spheres ."  Thus, G is the spherical version of a Lie contact transformation. 
For more about  Lie geometry over the reals see Yaglom (1981) and Rigby 
(1981). 

3.2. Extended Action of  M6bius  Groups 

Let us find the image of a "sphere"  w of X under inversion in a proper  
"sphere"  g of  X. Let w in W represent w and let the invertible matrix 7 
in W represent g. Then the image is given by 

~ o w  y w J y  

" 7*7 7 * 7 - v w ' v  -1 
y 'w  

: ( 2 7 . w -  w T ) ( - y - 1 )  = w - 2 y  " 
" 7"7  

Here I and * are the involution and anti-involution on A that extend 
negation on IV, respectively. Dividing by y *y was not necessary to obtain 
the equation of the image "sphere,"  but makes the t ransformation 
orthogonal and more easily recognized simply as a "reflection." 

Introduce a new linear space W which is isometric to the space W and 
represents equations of  "spheres"  of  X. The isometry is given by 

1,~= ,,,~ w = 
- wO 

when r~ is equipped with the quadratic form ~ # .  rP o =- -W W +W'w. So 
and w both represent the equation w ~  w ~. Transporting the 
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transformation from W to W, we obtain if'= ~-2~?(~.ff/~?.~). Now if' 
represents the equation of the image "sphere." 

This interpretation is by far the simplest way to calculate the equation 
of the image of a "sphere" represented by w with respect to inversion in 
the proper "sphere" represented by y. Compare this with Yaglom (1981), 
p. 352. 

Finally, since the transformations ~' = ff - 2~(~. 9 /~ .  ~), for all invert- 
ible y in W, generate the orthogonal group O(W), the methods of this 
paper yield in a unified way (1) the M6bius group of X, (2) the group of 
the Lie geometry of Y; and (3) the orthogonal group of W, as well as the 
natural extensions that act on (1) the "spheres" of X and (2) what is 
classically known as bundles of "spheres" that touch a given "sphere." 
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